INTRODUCTION TO MEAN-FIELD SPIN GLASSES -AND THE TAP APPROACH

DAVID BELIUS

For now these are "skeletal" notes, only providing the bare minimum definitions and results. The notes may be fleshed later.

1. BASIC NOTATION

The closed ball of radius r in \mathbb{R}^N is denoted by

(1)
$$B_N(r) := \left\{ \sigma \in \mathbb{R}^N : |\sigma| \le r \right\}.$$

The open ball of that radius is denoted by

(2)
$$B_N^{\circ}(r) := \left\{ \sigma \in \mathbb{R}^N : |\sigma| < r \right\}.$$

The closed resp. open balls of radius \sqrt{N} are denoted by

(3)
$$B_N := B_N(\sqrt{N}), \qquad B_N^\circ := B_N^\circ(\sqrt{N}).$$

The sphere of radius r embedded in \mathbb{R}^N is denoted by

(4)
$$S_{N-1}(r) := \left\{ \sigma \in \mathbb{R}^N : |\sigma| = r \right\}.$$

The sphere of radius \sqrt{N} is denoted by

(5)
$$S_{N-1} := S_{N-1}(\sqrt{N}).$$

2. General framework of equilibrium statistical physics

- (1) The configuration space: any set Σ .
- (2) The reference measure: any probability measure Q on Σ .
- (3) The Hamiltonian: any function $H: \Sigma \to \mathbb{R}$.
- (4) The inverse temperature parameter: $\beta \geq 0$.
- (5) The partition function for a given β : $Z(\beta) := Q [\exp(\beta H_N(\sigma))].$
- (6) The Gibbs measure for a given β : the measure G_{β} on Σ defined by

(6)
$$G_{\beta}(A) := Q \left[1_A \exp(\beta H_N(\sigma)) \right], \quad A \subset \Sigma.$$

(In the above we ignore issues of measurability).

2.1. Free energy. Usually, we consider a sequence of configuration spaces Σ_N , reference measures Q_N , partition functions $Z_N(\beta)$ and Gibbs measure $G_{N,\beta}$, where the size of Σ_N grows with N (e.g. $\Sigma = \{-1,1\}^N, \Sigma = S_{N-1}$). In this case the quantity

(7)
$$F_N(\beta) := \frac{1}{N} \log Z_N(\beta)$$

is called the *free energy*.

3. Model definitions

Definition 1 (Hamiltonian of the Curie-Weiss model). For any $N \ge 1$ the function $H_N : B_N \to \mathbb{R}$,

(8)
$$H_N(\sigma) := \sum_{i,j=1}^N \frac{1}{N} \sigma_i \sigma_j$$

is the Hamiltonian of the Curie-Weiss model.

The Hamiltonian of the Curie-Weiss model with an external field of strength $h \ge 0$ is defined as

(9)
$$H_N^h(\sigma) := H_N(\sigma) + h \sum_{i=1}^N \sigma_i.$$

Definition 2 (Ising Curie-Weiss model). Let $\beta \ge 0, h \ge 0$, and $N \ge 1$. Let H_N^h be the Curie-Weiss Hamiltonian from (9). Let the configuration space be given by $\Sigma_N = \{-1, 1\}^N$, and let the reference measure Q_N be the uniform measure $Q_N(A) = \frac{|A|}{|\Sigma|}, A \subset \Sigma_N$ on Σ_N . Using these, let the partition function, Gibbs measure and free energy be defined as in Section 2. These objects together constitute the Ising Curie-Weiss model with external field of strength h and inverse temperature β .

Definition 3 (Spherical Curie-Weiss model). Let $\beta \geq 0, h \geq 0$, and $N \geq 1$. Let H_N^h be the Curie-Weiss Hamiltonian from (9). Let the configuration space be given by $\Sigma_N = S_{N-1}$, and let the reference measure Q_N be the uniform measure on Σ_N . Using these, let the partition function, Gibbs measure and free energy be defined as in Section . These objects together constitute the spherical Curie-Weiss model with external field of strength h and inverse temperature β .

Definition 4 (Sherrington-Kirkpatrick Hamiltonian). Let $N \ge 1$. We have the following two alternative definitions.

(1) Let $J_{ij}, i, j = 1, ..., N$ be i.i.d. standard Gaussian random variables, and $H_N : B_N \to \mathbb{R}$,

(10)
$$H_N(\sigma) = \sum_{i,j=1}^N \frac{J_{ij}}{\sqrt{N}} \sigma_i \sigma_j.$$

Then H_N is called the Sherrington-Kirkpatrick Hamiltonian, as is any random function with the same law as H_N .

(2) Let $H_N : B_N \to \mathbb{R}$ be a Gaussian process on B_N with zero mean everywhere, and covariance

(11)
$$\mathbb{E}[H_N(\sigma)H_N(\tau)] = N\left(\frac{\sigma\cdot\tau}{N}\right)^2.$$

Then H_N is called the Sherrington-Kirkpatrick Hamiltonian, as is any random function with the same law as H_N .

Definition 5 (Pure *p*-spin Hamiltonians). Let $N \ge 1$ and $p \ge 1$. We have the following two alternative definitions.

(1) Let $J_{i_1,\ldots,i_p}, i_1,\ldots,i_p = 1,\ldots,N$ be i.i.d. standard Gaussian random variables, and $H_N: B_N \to \mathbb{R}$,

(12)
$$H_N(\sigma) = \sum_{i,j=1}^N \frac{J_{ij}}{N^{\frac{p-1}{2}}} \sigma_{i_1} \dots \sigma_{i_p}.$$

Then H_N is called the pure *p*-spin Hamiltonian, as is any random function with the same law as H_N .

(2) Let $H_N : B_N \to \mathbb{R}$ be a Gaussian process on B_N with zero mean everywhere, and covariance

(13)
$$\mathbb{E}[H_N(\sigma)H_N(\tau)] = N\left(\frac{\sigma\cdot\tau}{N}\right)^p.$$

Then H_N is called the pure *p*-spin Hamiltonian, as is any random function with the same law as H_N .

Definition 6 (Mixed *p*-spin Hamiltonian). Let $a_p \ge 0$ for $p = 0, 1, \ldots$. Let $x(r) = \sum_{p=0}^{\infty} a_p r^p$. Assume $x(1) = \sum_{p=1}^{\infty} a_p < \infty$. Let $N \ge 1$. We have the following two alternative definitions.

(1) Let $H_N^p(\sigma), p \ge 0$, be independent pure *p*-spin Hamiltonians (as in Definition 5). Let

(14)
$$H_N(\sigma) = \sum_{p=0}^{\infty} \sqrt{a_p} H_N^p(\sigma)$$

Then H_N is called a mixed *p*-spin model with covariance function (or mixture) x(r).

(2) Let $H_N : B_N \to \mathbb{R}$ be a Gaussian process on B_N with zero mean everywhere, and covariance

(15)
$$\mathbb{E}[H_N(\sigma)H_N(\tau)] = Nx\left(\frac{\sigma\cdot\tau}{N}\right).$$

Then H_N is called a mixed *p*-spin Hamiltonian with covariance function (or mixture) x(r), as is any random function with the same law as H_N .

4. BASIC RESULTS

Lemma 7. In each of the Definitions 4, 5, and also in Definition 6 provided z(r) only has finitely many non-zero terms, the definition 1 implies the definition 2.

Proof. Exercise sheet 1.