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For now these are “skeletal” notes, only providing the bare minimum
definitions and results. The notes may be fleshed later.

1. Basic notation

The closed ball of radius r in R
N is denoted by

(1) BN(r) :=
{

σ ∈ R
N : |σ| ≤ r

}

.

The open ball of that radius is denoted by

(2) B◦
N(r) :=

{

σ ∈ R
N : |σ| < r

}

.

The closed resp. open balls of radius
√
N are denoted by

(3) BN := BN (
√
N), B◦

N := B◦
N (

√
N).

The sphere of radius r embedded in R
N is denoted by

(4) SN−1(r) :=
{

σ ∈ R
N : |σ| = r

}

.

The sphere of radius
√
N is denoted by

(5) SN−1 := SN−1(
√
N).

2. General framework of equilibrium statistical physics

(1) The configuration space: any set Σ.
(2) The reference measure: any probability measure Q on Σ.
(3) The Hamiltonian: any function H : Σ → R.
(4) The inverse temperature parameter: β ≥ 0.
(5) The partition function for a given β: Z(β) := Q [exp(βHN(σ))].
(6) The Gibbs measure for a given β: the measure Gβ on Σ defined

by

(6) Gβ(A) := Q [1A exp(βHN(σ))] , A ⊂ Σ.

(In the above we ignore issues of measurability).
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2.1. Free energy. Usually, we consider a sequence of configuration
spaces ΣN , reference measures QN , partition functions ZN(β) and
Gibbs measure GN,β, where the size of ΣN grows with N (e.g. Σ =
{−1, 1}N ,Σ = SN−1). In this case the quantity

(7) FN (β) :=
1

N
logZN(β)

is called the free energy.

3. Model definitions

Definition 1 (Hamiltonian of the Curie-Weiss model). For any N ≥ 1
the function HN : BN → R,

(8) HN(σ) :=
N
∑

i,j=1

1

N
σiσj

is the Hamiltonian of the Curie-Weiss model.
The Hamiltonian of the Curie-Weiss model with an external field of

strength h ≥ 0 is defined as

(9) Hh
N(σ) := HN(σ) + h

N
∑

i=1

σi.

Definition 2 (Ising Curie-Weiss model). Let β ≥ 0, h ≥ 0, and N ≥ 1.
Let Hh

N be the Curie-Weiss Hamiltonian from (9). Let the configuration
space be given by ΣN = {−1, 1}N , and let the reference measure QN

be the uniform measure QN (A) = |A|
|Σ|

, A ⊂ ΣN on ΣN . Using these,

let the partition function, Gibbs measure and free energy be defined as
in Section 2. These objects together constitute the Ising Curie-Weiss
model with external field of strength h and inverse temperature β.

Definition 3 (Spherical Curie-Weiss model). Let β ≥ 0, h ≥ 0, and
N ≥ 1. Let Hh

N be the Curie-Weiss Hamiltonian from (9). Let the
configuration space be given by ΣN = SN−1, and let the reference
measure QN be the uniform measure on ΣN . Using these, let the
partition function, Gibbs measure and free energy be defined as in
Section . These objects together constitute the spherical Curie-Weiss
model with external field of strength h and inverse temperature β.

Definition 4 (Sherrington-Kirkpatrick Hamiltonian). Let N ≥ 1. We
have the following two alternative definitions.
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(1) Let Jij, i, j = 1, . . . , N be i.i.d. standard Gaussian random
variables, and HN : BN → R,

(10) HN (σ) =

N
∑

i,j=1

Jij√
N
σiσj .

Then HN is called the Sherrington-Kirkpatrick Hamiltonian, as
is any random function with the same law as HN .

(2) Let HN : BN → R be a Gaussian process on BN with zero mean
everywhere, and covariance

(11) E[HN (σ)HN(τ)] = N
(σ · τ

N

)2

.

Then HN is called the Sherrington-Kirkpatrick Hamiltonian, as
is any random function with the same law as HN .

Definition 5 (Pure p-spin Hamiltonians). Let N ≥ 1 and p ≥ 1. We
have the following two alternative definitions.

(1) Let Ji1,...,ip, i1, . . . , ip = 1, . . . , N be i.i.d. standard Gaussian
random variables, and HN : BN → R,

(12) HN(σ) =

N
∑

i,j=1

Jij

N
p−1

2

σi1 . . . σip .

Then HN is called the pure p-spin Hamiltonian, as is any ran-
dom function with the same law as HN .

(2) Let HN : BN → R be a Gaussian process on BN with zero mean
everywhere, and covariance

(13) E[HN (σ)HN(τ)] = N
(σ · τ

N

)p

.

Then HN is called the pure p-spin Hamiltonian, as is any ran-
dom function with the same law as HN .

Definition 6 (Mixed p-spin Hamiltonian). Let ap ≥ 0 for p = 0, 1, . . . .
Let x(r) =

∑∞
p=0

apr
p. Assume x(1) =

∑∞
p=1

ap < ∞. Let N ≥ 1. We
have the following two alternative definitions.

(1) Let Hp
N(σ), p ≥ 0, be independent pure p-spin Hamiltonians (as

in Definition 5). Let

(14) HN(σ) =

∞
∑

p=0

√
apH

p
N(σ).

Then HN is called a mixed p-spin model with covariance func-
tion (or mixture) x(r).
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(2) Let HN : BN → R be a Gaussian process on BN with zero mean
everywhere, and covariance

(15) E[HN (σ)HN(τ)] = Nx
(σ · τ

N

)

.

Then HN is called a mixed p-spin Hamiltonian with covariance
function (or mixture) x(r), as is any random function with the
same law as HN .

4. Basic results

Lemma 7. In each of the Definitions 4, 5, and also in Definition 6

provided z(r) only has finitely many non-zero terms, the definition 1

implies the definition 2.

Proof. Exercise sheet 1. �


