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Chapter 1

Introduction

1.1 Motivations

1.1.1 Motivation from physics

The first mean-field spin glass models originated in theoretical physics, in the study of magnetism.

1.1.1.1 Spin model: Ising model (1920)

The Ising model on a lattice is toy a model of magnetism. It consists of many (N → ∞) individual
“spin variables” which interact with each other.

The model is constructed by taking a box BN of side-length N in d-dimensional lattice, and
associating with each vertex a ∈ BN a spin variable σa ∈ {−1, 1}. The spins at all vertices of
the box are collected in a configuration vector σ ∈ {−1, 1}Nd

. To each configuration vector one
associates an energy via the Hamiltonian

HN(σ) =
∑

a∼b

σaσb, (1.1.1)

where the sum is over all neighboring vertices in the box BN . Since

σaσb =

{

1 if σa = σb,

−1 if σa 6= σb,
(1.1.2)

the energy HN(σ) is high if many neighboring spins align in the spin configuration σ ∈ {−1, 1}Nd

.
The “interaction” is modelled by defining the Gibbs measure GN,β as the measure on {−1, 1}Nd

proportional to exp(βHN(σ)). Here β ≥ 0 is a parameter control the strength of the interaction.
The most important feature of the model is a phase transition. There is a critical βc, sepa-

rating the high temperature regime β ∈ (0, βc) from the low temperature regime β > βc. At high
temperature, a sample σ ∈ {−1, 1}Nd

from GN,β for N large has roughly the same proportion of
+1s and −1s, and the correlation between spins decays rapidly with distance - sufficiently distant
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spins are essentially independent with mean zero. At low temperature a sample σ ∈ {−1, 1}Nd

from GN,β for N large either has a significantly higher proportion of +1s or of −1s, with high
probability. Moreover, spins remain correlated even as distance between spins tends to infinity.
Taking N → ∞ one can define a limiting Gibbs measure G∞,β. At low temperature that measure
has a pure state decomposition of the form

G∞,β =
1

2
G∞,β,+ +

1

2
G∞,β,−, (1.1.3)

where G∞,β,± are probability measures under which the spins variables have correlations that decay
rapidly with distance, like the Gibbs measure itself does at at high temperature. However, the
spatial average of the spins in a sample from G∞,β,± will be close to a number ±m∗(β), where
m∗(β) > 0 is called a mean magnetization. Under G∞,β,±, sufficiently distant spins are essentially
independent with mean ±m∗(β). The meaning of the latter property is that G∞,β,± are probability
measures of a spin system that is effectively at high temperature. Thus the limiting Gibbs measure
G∞,β is either at high temperature if β ∈ (0, βc), or it is the combination of two probability
measures at (effective) high temperature if β > βc.

Note that (1.1.3) implies the following description of sampling from the limiting Gibbs measure
G∞,β at low temperature: first flip an unbiased coin to pick “+” or “−”. Then sample a spin con-
figuration from the corresponding G∞,β,±. Since each of G∞,β,± have rapidly decaying correlations,
all of the “global correlation” of G∞,β at low temperature is “caused” by the coin flip.

1.1.1.2 Spin glass model: Edwards-Anderson model (1975)

There are exotic magnetic materials where the interactions between spins is disordered. This
means that some pairs of spins interact in such a way as to cause them to align (like in the Ising
model), while other pairs of spins interact in such a way as to cause them to take opposite values.
The Edwards-Anderson model is obtained by modifying the Ising model to capture this behavior.
Precisely, the Hamiltonian (1.1.1) is replaced by

HN(σ) =
∑

a∼b

Jabσaσb, (1.1.4)

where Jab are i.i.d. Gaussian random variables associated to each edge of the lattice. Now HN is
a random function, which makes the Gibbs measure GN,β a random probability measure. One is
interested in the typical properties of (samples from) the Gibbs measure GN,β, for a fixed typical
realization of the Ja,b.

Given a realization of the Ja,b, the Gibbs measure is biased towards configurations where σa = σb

if Ja,b > 0 (as in the Ising model), but biased towards configurations where σa = −σb if Ja,b < 0.
Note that for a typical realization of the Ja,b there will be some paths

a ∼ b ∼ c ∼ d ∼ a (1.1.5)

of vertices in the lattice such that

Ja,b > 0 Jb,c > 0 Jc,d > 0 Ja,d < 0. (1.1.6)
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This Gibbs measure will then on the one hand be biased towards σa = σd because of the interactions
on the path a ∼ b ∼ c ∼ d, but on the other hand it will be biased towards σa = −σd from the
interaction along the edge a ∼ d. The phenomenon of having contradicting biases built-in to the
Gibbs measure is called frustration. Frustration makes the Edwards-Anderson model very difficult
to study.

1.1.1.3 Mean-field spin glass model: SK model (1975)

The Sherrington-Kirkpatrick model is a mean-field version of the Edwards-Anderson model, that
is a model that has been simplified by replacing the lattice with a complete graph. That is, one
lets all pairs of spins interact rather than just neighbors. The Hamiltonian of the model with N
spins is

HN(σ) =
N∑

i,j=1

Ja,b√
N
σaσb (1.1.7)

for i.i.d. standard Gaussians Ja,b. Note that the varying sign of Ja,b means that this model is still

subject to frustration. The scaling factor N− 1

2 is needed to place the corresponding Gibbs measure
GN,β into the “interesting regime”, where a phase transition takes place at a finite β ≥ 0. If a spin
interacts with N − 1 rather than 2d other spins, where N → ∞, the individual reactions need to
be scaled down so as to not “overwhelm” the system.

Early work by Thouless-Anderson-Palmer (TAP; 1977) suggested that at low temperature
the SK model has a kind of pure state decomposition like (1.1.3), but vastly more complex. In
particular, it appeared possible that the decomposition involves an unbounded number of pure
states. Parisi’s subsequent breakthrough (1979) confirmed this at the level of rigor of theoretical
physics, with a method1 quite far from the realm of arguments that can be turned into rigorous
mathematics. His result took the form of a formula for the so called free energy of the model, whose
form and derivation suggested an infinite hierarchy of pure states combined with random weights
depending on the realization of the Ja,b. No statistical physics model with such a low temperature
phase had ever been studied previously. Since then, clarifying and extending this picture has been
a major effort in theoretical physics and mathematics, which is on-going.

Also on-going is the debate within theoretical physics if this kind of infinite pure state hierarchy
is also present in the original lattice Edwards-Anderson model. The arguments for such a picture
carrying over to the Edwards-Anderson model for very large d are stronger, but for the most
physically relevant dimension d = 3 there is to this date no consensus in theoretical physics as to
whether the low temperature phase is more similar to that of the SK model, or more similar to
that of the Ising model.

1.1.2 Motivation from theoretical computer science

The k-SAT problem of theoretical computer science involves finding solutions to a Boolean equation
in a large number of Boolean variables. The problem is NP hard, which means that most likely

1The replica method of theoretical physics combined with a replica symmetry breaking ansatz



CHAPTER 1. INTRODUCTION 6

there does not exist an algorithm that can solve any such Boolean equation efficiently. Theoretical
computer scientists asked the natural question of if a typical Boolean equation can be efficiently
solved. This lead them to formulate a model of a random k-SAT formula.

TBC

1.1.3 Motivation from extreme value theory of correlated random fields

TBC
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1.2 Notation for balls and spheres

The closed ball of radius r in RN is denoted by

BN(r) :=
{
σ ∈ RN : |σ| ≤ r

}
. (1.2.1)

The open ball of that radius is denoted by

B◦
N(r) :=

{
σ ∈ RN : |σ| < r

}
. (1.2.2)

The closed resp. open balls of radius
√
N are denoted by

BN := BN (
√
N), B◦

N := B◦
N (

√
N). (1.2.3)

The sphere of radius r embedded in RN is denoted by

SN−1(r) :=
{
σ ∈ RN : |σ| = r

}
. (1.2.4)

The sphere of radius
√
N is denoted by

SN−1 := SN−1(
√
N). (1.2.5)
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1.3 General framework of equilibrium statistical physics

An equilibrium statistical physics model defines a Gibbs measure on the space of all possible
states (or configurations) of the system being modelled. A typical state of the entire system is
modelled by a random sample from the Gibbs measure. To construct the Gibbs measure, one first
defines a Hamiltonian, which assigns an energy to each possible state of the system, and uses it to
exponentially tilt a “default measure” known as the reference measure (or prior measure) towards
high values of the energy. The building blocks of such a model are the following.

1. The configuration space: any set Σ.

2. The reference measure: any probability measure Q on Σ.

3. The Hamiltonian: any function H : Σ → R.

4. The inverse temperature parameter: β ≥ 0.

5. The partition function for a given β:

Z(β) := Q [exp(βH(σ))] . (1.3.1)

6. The Gibbs measure for a given β: the measure Gβ on Σ defined by2

Gβ(A) := Q [1A exp(βH(σ))] , A ⊂ Σ. (1.3.2)

(In the above we ignore issues of measurability).

1.3.1 Free energy

Usually, we consider a sequence of configuration spaces ΣN , reference measures QN , partition
functions

ZN(β) := QN [exp(βH(σ))] , (1.3.3)

and Gibbs measure GN,β, where the size of ΣN grows with N (e.g. Σ = {−1, 1}N or Σ = SN−1).
In this case the quantity

FN (β) :=
1

N
logZN(β) (1.3.4)

is called the free energy.

2In physics the convention is that a system is biased towards low rather than high energies. Correspondingly a
physicist would replace exp(βH(σ)) in (1.3.1)-(1.3.2) by exp(−βH(σ)). The definition of Hamiltonians must then
also be adapted to this convention. E.g. the Curie-Weiss Hamiltonian (2.1.1) would be replaced with HN (σ) =

−∑N

i,j=1

1

N
σiσj . Since the negative signs cancel out one clearly obtains exactly the same Gibbs measure regardless

of the sign convention used. As is often the case in the mathematical literature, we use the convention without
negative signs.
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Curie-Weiss model

2.1 Definition and first steps of free energy calculation

We first define the Curie-Weiss Hamiltonian.

Definition 2.1.1 (Hamiltonian of the Curie-Weiss model). For any N ≥ 1 the function HN :
BN → R given by

HN(σ) :=

N∑

i,j=1

1

N
σiσj (2.1.1)

is the Curie-Weiss Hamiltonian. The Curie-Weiss Hamiltonian with an external field of strength
h ≥ 0 is defined as

Hh
N(σ) := HN(σ) + h

N∑

i=1

σi. (2.1.2)

Next we define the actual Curie-Weiss model(s), using the equilibrium statistical physics frame-
work described in Section 1.3.

Definition 2.1.2 (Ising and Spherical Curie-Weiss model). Let β ≥ 0, h ≥ 0, and N ≥ 1. Let Hh
N

be the Curie-Weiss Hamiltonian from (2.1.2). Let either

1. (Ising Curie-Weiss) the configuration space be given by ΣN = {−1, 1}N , and let the reference
measure QN equal the uniform probability Q±

N on {−1, 1}N , or

2. (Spherical Curie-Weiss) the configuration space be given by ΣN = SN−1, and let the reference
measure QN equal the uniform probability Qsph

N on SN−1.

9
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Based on these, let the partition function ZN(β, h) = ZN(β), Gibbs measure GN,β=GN,β,h and free
energy FN(β) = FN (β, h) be defined as in Section 1.3. These objects together constitute the Ising
Curie-Weiss model resp. spherical Curie-Weiss model, with external field of strength h and inverse
temperature β.

Our first goal is to compute the free energy of the Curie-Weiss model(s). They key for the
computation is the identity

HN(σ) =

N∑

i,j=1

1

N
σiσj = N

(

1

N

N∑

i=1

σi

)2

= N
(σ · u

N

)2

∀σ ∈ SN−1 (2.1.3)

satisfied by the Curie-Weiss Hamiltonian, where

u = (1, . . . , 1) ∈ SN−1. (2.1.4)

For the Curie-Weiss Hamiltonian with external field we obtain

Hh
N(σ) = HN(σ) +Nh× 1

N

N∑

i=1

σi = Ng
(σ · u

N

)

∀σ ∈ SN−1, (2.1.5)

where
g(α) = α2 + hα, α ∈ (−1, 1). (2.1.6)

Thus the partition function ZN(β, h) of the Ising or spherical Curie-Weiss models satisfies

ZN(β, h) = QN

[

exp
(

Ng
(σ · u

N

))]

∀β, h ≥ 0. (2.1.7)

Since the integrand depends only on σ ·u it makes sense to decompose the configuration space into
“slices” along the direction u. These slices can be defined as

Dα =
{

σ ∈ SN−1 :
∣
∣
∣
σ · u
N

− α
∣
∣
∣ ≤ N−1/3

}

, α ∈ (−1, 1). (2.1.8)

Letting
A = (N−1/3Z) ∩ (−1, 1), (2.1.9)

we then have
SN−1 =

⋃

α∈A
Dα. (2.1.10)

Therefore

QN

[
exp

(
Ng
(
σ·u
N

))]
=

∑

α∈A
QN

[
1Dα

exp
(
Ng
(
σ·u
N

))]

=
∑

α∈A
QN

[
exp

(
Ng
(
σ·u
N

))
|Dα

]
×QN [Dα].

(2.1.11)

If g is say Lipschitz on [−1, 1], then

QN

[

exp
(

Ng
(σ · u

N

))

|Dα

]

= exp (Ng(α) + o(N)) uniformly over α ∈ (−1, 1). (2.1.12)

After using this in (2.1.11), it remains to estimate the “entropy” QN [Dα]. This is the topic of the
next section.



CHAPTER 2. CURIE-WEISS MODEL 11

2.2 Entropy of spherical and Ising models

The following lemma is the standard large deviation tail estimate for the binomial distribution, in
terms of the binary entropy function

I± : [−1, 1] → [0,∞), I±(m) =
1 +m

2
log(1 +m) +

1−m

2
log(1−m). (2.2.1)

Let Q±
N denote the uniform probability on {−1, 1}N .

Lemma 2.2.1 (Entropy function for Ising models). Let

u = (1, . . . , 1) ∈ RN . (2.2.2)

It holds that

Q±
N

[{
σ ∈ SN−1 :

σ·u
N

∈ [a, b]
}]

= exp (−NI±(a) + o(N)) uniformly for

{

0 ≤ a < b ≤ 1,

|a− b| ≥ 2N−1.

(2.2.3)

A proof of Lemma 2.2.1 is given in the appendix (Part 4).
Let Qsph

N denote the uniform probability on SN−1. Let

Isph : (−1, 1) → [0,∞), Isph(m) = −1

2
log(1−m2). (2.2.4)

Lemma 2.2.2 (Entropy function for spherical models). Fix an ε > 0. For any u ∈ SN−1 it holds
that

Qsph
N

[{

σ ∈ SN−1 :
σ · u
N

∈ [a, b]
}]

= exp
(
−NIsph(a) + o(N)

)
uniformly for

{

0 ≤ a < b ≤ 1− ε,

|a− b| ≥ N−1/2.

(2.2.5)

Remark 2.2.3. Heuristically, the formula 2.2.5 can be derived from the fact that the surface area
of SN−1(r) is proportional to rN−1. The argument is as follows: We have

SN−1(r) = cNr
N−1, (2.2.6)

for a dimension dependent constant cN which satisfies

cN−1

cN
= exp(o(N)), (2.2.7)

(precisely, cN = 2π
N
2

Γ(N
2 )

, where the gamma function Γ satisfies Γ(x+ 1) = xΓ(x) for x > 1).

The set
{
σ ∈ SN−1 :

σ·u
N

= α
}

is a sphere of surface dimension N − 2 embedded in RN , which

has radius
√

N(1− α2). Thus its N − 2-dimensional surface area is

cN−1

(√

N(1− α2)
)N−2

. (2.2.8)
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For δ > 0 the set {

σ ∈ SN−1 :
σ · u
N

∈ [α, α + δ]
}

(2.2.9)

should then have roughly area

δ × cN−1

(√

N(1− α2)
)N−2

. (2.2.10)

The surface area of SN−1 is cN(
√
N)N−1. Thus Qsph

N

[{
σ ∈ SN−1 :

σ·u
N

∈ [α, α+ δ]
}]

should there-
fore be approximately equal to

cN−1

(√

N(1− α2)
)N−2

cN (
√
N)N−1

= exp(o(N))× (1− α2)
N−2

2 = exp

(
N

2
log(1− α2) + o(N)

)

. (2.2.11)

A proof of Lemma 2.2.2 is given in the appendix.
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2.3 Curie-Weiss free energy formula from geometric decom-

position

Proposition 2.3.1. Fix h ≥ 0, β ≥ 0. Consider the free energy FN (β, h) of the Ising or spherical
Curie-Weiss model, as defined in Definition 2.1.2. For the Ising Curie-Weiss model (i.e. if QN =
Q±

N ) define I = I±, and for the spherical Curie-Weiss mode, (i.e. if QN = Qsph
N ) define I = Isph.

In either case it holds that
lim

N→∞
FN(β, h) = sup

α∈(−1,1)

F (α), (2.3.1)

where
F (α) = β(α2 + hα)− I(α). (2.3.2)

Recall the identity (2.1.6)-(2.1.7) for the partition function of the Curie-Weiss model (Ising
and spherical). By the identity, Proposition 2.3.1 follows directly from the following slightly more
general result.

Lemma 2.3.2. Let QN = Q±
N and I = I±, or QN = Qsph

N and I = Isph. For any differentiable and
Lipschitz continuous g : [−1, 1] → R it holds that

ZN,g := QN

[

exp
(

Ng
(σ · u

N

))]

= exp

(

N sup
α∈(−1,1)

F (α) + o(N)

)

, (2.3.3)

where
F (α) = g(α)− I(α). (2.3.4)

The already discussed (2.1.8)-(2.1.12) are the beginning of the proof of Lemma (2.3.3). The
result is

ZN,g =
∑

α∈A
QN

[

exp
(

Ng
(σ · u

N

))

|Dα

]

︸ ︷︷ ︸

=exp(Ng(α)+o(N)) uniformly over α∈[−1,1]

×QN [Dα]. (2.3.5)

It remains to estimate QN [Dα] using Lemma 2.2.1 resp. Lemma 2.2.2. Since I(α ± N1/3) =
I(α) + o(N) for I ∈ {I±, Isph}for any fixed α ∈ (−1, 1), those lemmas imply that

QN [Dα] = exp (−NI(α) + o(N)) (2.3.6)

for any fixed α ∈ (N−1/3, 1). By symmetry the estimate (2.3.6) also holds for α ∈ (−1,−N−1/3),
and for α ∈ [−N−1/3, N−1/3] it is trivial since I(α) = o(1) for such α. Combining (2.3.5) and
(2.3.6) and

|A| ≤ 2N2/3 = exp(o(N)) (2.3.7)

”morally speaking” implies (2.3.3), modulo some minor technicalities. This is the essentially com-
plete argument behind the proof of Lemma 2.3.2, and of Proposition 2.3.1.
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Remark 2.3.3 (Gibbs measure decomposition). The method used to derive (2.3.3) is easily adapted
to prove pure state decomposition for the Gibbs measure GN,g(A) = QN

[
1A exp

(
Ng
(
σ·u
N

))]
/ZN,g

corresponding to the partition function ZN,g in (2.3.3). For any α which is not within o(1) of a
global maximizer of F (α), the set Dα will have exponentially small measure under the GN,g. Such
an α will satisfy

F (α)− sup
α∈(−1,1)

F (α) ≤ −c (2.3.8)

for a constant c > 0, so

GN,g(Dα) =
QN

[
1Dα

exp
(
Ng
(
σ·u
N

))]

ZN,g

=
exp (NF (α) + o(N))

exp

(

N sup
α∈(−1,1)

F (α) + o(N)

) ≤ exp (−cN + o(N)) .

(2.3.9)
This suggests a Gibbs measure decomposition of the form

GN,g ≈
1

# glob. max of F

∑

α∈(−1,1):α glob. max of F

GN,g,α, (2.3.10)

where GN,g,α are “pure states” which are uniform probability measures on the set Dα. It is con-
ceptually starlight-forward to make the heuristic approximation (2.3.10) quantitative and precise,
using concrete estimates like (2.3.9).

The above discussion of pure state decompositions translates directly to the Curie-Weiss Gibbs
measures GN(β, h) from Definition 2.1.2, since those GN(β, h) are in fact equal to GN,g for the g
in (2.3.5)..

The rest of this section addresses the minor technical details of the fully rigorous proof of Lemma
2.3.2. If you are comfortable with the hand-wavy arguments above I recommend skipping ahead
to Section 2.4, where we study the qualitative consequences of the variational formula (2.3.1).

2.3.1 Remaining technical details: ensuring uniformity in (2.3.6) and
dealing with “edge” in (2.1.11)

It only remains to deal with the minor technicalities needed to make the argument for (2.3.3) fully
rigorous.

Lemma 2.3.4. For any Lipschitz g and I ∈ {I±, Isph} there is a ε ∈ (0, 1) such that

sup
α∈(−1,1):|α|≥1−ε

{g(α)− I(1− ε)} ≤ sup
α∈(−1,1)

F (α) = sup
α∈[−1+ε,1−ε]

F (α), (2.3.11)

where F is as in (2.3.4).
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Proof. For both I = I± and I = Isph the derivative I ′(α) diverges as α → ±1, while g′(α) is
bounded α ∈ [−1, 1] since it is Lipschitz. Thus we can pick ε ∈ (0, 1) small enough so that
F ′(−α) > 0 > F ′(α) for α ∈ (−1, 1) s.t. |α| ≥ 1− ε. This implies the equality in (2.3.11).

If I = Isph it is obvious that the inequality in (2.3.11) holds for ε ∈ (0, 1) small enough, since
Isph(α) → −∞ as α → ±1. For I = I± the inequality holds for small enough ε ∈ (0, 1) since

lim
ε→0

sup
α∈[1−ε,1)

{g(α)− I(1− ε)} = g(1)− I(1) = F (1) ≤ sup
α∈(−1,1)

F (α). (2.3.12)

Proof of Lemma 2.3.2. By (2.3.5) we have

ZN,g =
∑

α∈A
exp(Ng(α))QN [Dα] (2.3.13)

For any ε ∈ (0, 1), Lemma 2.2.1 resp. Lemma 2.2.2 imply the bound

QN [Dα] = exp (−NI(α) + o(N)) uniformly over α ∈ [−1 + ε, 1− ε]. (2.3.14)

From this and (2.3.7) it follows that

∑

α∈A∩(−1+ε,1−ε)

exp(Ng(α))QN [Dα] = exp

(

N sup
α∈(−1+ε,1−ε)

F (α) + o(N)

)

. (2.3.15)

Lemma 2.2.1 resp. Lemma 2.2.2 with a = 1− ε and b = 1 we have for ε ∈ (0, 1)

QN [Dα] ≤ exp (−NI(1 − α) + o(N)) uniformly over α ∈ (−1, 1), |α| ≥ 1− ε. (2.3.16)

Thus the “rest” can be bounded as

∑

α∈A:|α|≥1−ε

exp(Ng(α))QN [Dα] ≤ exp

(

N sup
α∈(−1,1):|α|≥1−ε

{g(α)− I(1− ε)}+ o(N)

)

. (2.3.17)

Combining (2.3.13), (2.3.15), (2.3.17) and picking ε ∈ (0, 1) small enough so that (2.3.11) holds,
we deduce (2.3.3).
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2.4 Analysis of Curie-Weiss Free Energy formula

Important properties of the Ising resp. spherical Curie-Weiss model for different combinations of
parameters β ≥ 0, h ≥ 0 can be deduced from the shape of the function

F (α) = β(α2 + hα)− I(α) (2.4.1)

from Proposition 2.3.1.

Example 2.4.1. (Curie-Weiss model h = 0) Consider the Ising and spherical Curie-Weiss models
without external field (h = 0). The following figure shows plots of F (α) for different values of
β ≥ 0.
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Figure 2.4.1: Plots of F (α) for h = 0, I = Isph (solid) and I = I± (dashed) and various values of
β.

Letting

βc :=
1√
2

(2.4.2)

we observe that both the Ising and spherical models satisfy

β ∈ [0, βc] =⇒ F (α) is uniquely maxmized at α = 0 and F (0) = 0 (2.4.3)

and

β > βc =⇒ F (α) is maximized at ±m∗(β), where m∗(β) > 0 and F (m∗(β)) > 0. (2.4.4)

It is easy to prove (2.4.3) and (2.4.4) by using the series expansions

I±(α) = −
∑

p≥2:p even

αp

p(p− 1)
and Isph(α) = −1

2

∑

p≥2:p even

αp

p
, (2.4.5)
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which both derive from the expansion of log(1 + x).
The implications (2.4.3) and (2.4.4) exhibit a phase transition of the model. In (2.4.3)-(2.4.4)

it is detected from the properties of the maximizer(s) of F (α). By Proposition 2.3.1 we have for
h = 0 that

FN(β) →
{

0 if β ≤ βc,

> 0 if β > βc,
(2.4.6)

which is another (related) expression of the phase transition. h = 0.
Recall the discussion of the pure state decomposition (1.1.3). The fact that F (α) has two global

maximizers for β > βc suggests a pure state decomposition of the Curie-Weiss Gibbs measure of
the form

GN,β ≈ 1

2
GN,−m∗(β) +

1

2
GN,m∗(β), (2.4.7)

where GN,±m∗(β) are roughly uniform on D±m∗(β) ∩ ΣN . For the Ising Curie-Weiss model another
way to describe such GN,±m∗(β) are as a probability measure where the spins σi ∈ {−1, 1} are
roughly i.i.d. with mean ±m∗(β).

Example 2.4.2. (Curie-Weiss model h > 0) For h > 0 the function F (α) always has a unique
maximizer, and there is no phase transition in β. TBC.



Chapter 3

Mean-field spin glasses

3.1 Spin glass Hamiltonians and models

We now turn to actual mean-field spin glass models.

Definition 3.1.1 (Sherrington-Kirkpatrick (SK) Hamiltonian). Let N ≥ 1. We have the following
two alternative definitions.

1. Let Jij, i, j = 1, . . . , N be i.i.d. standard Gaussian random variables, and HN : BN → R,

HN(σ) =
N∑

i,j=1

Jij√
N
σiσj . (3.1.1)

Then HN is called the Sherrington-Kirkpatrick (SK) Hamiltonian, as is any random function
with the same law as HN .

2. Let HN : BN → R be a Gaussian process on BN with zero mean everywhere, and covariance

E[HN (σ)HN(τ)] = N
(σ · τ

N

)2

. (3.1.2)

Then HN is called the Sherrington-Kirkpatrick (SK) Hamiltonian, as is any random function
with the same law as HN .

Remark 3.1.2 (Other conventions). Our convention for the the Curie-Weiss Hamiltonian (2.1.1)
and the SK Hamiltonian (3.1.1) include the “self-interaction terms” N−1σ2

i resp. Jiiσ
2
i . These are

somewhat unnatural form the point of view of a physical spin model. Furthermore, our convention
(2.1.1),(3.1.1) has two interaction terms for each pair unordered {i, j}. An alternative convention
that removes these physically unnatural features is

HN(σ)
C-W
=

∑

1≤i<j≤N

1

N
σiσj , HN(σ)

SK
=

∑

1≤i<j≤N

Jij√
N
σiσj . (3.1.3)

19
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The Gibbs measure obtained with these conventions is essentially the same as with (2.1.1), (3.1.1)
with a modified (β → β

2
for C-W and β → β√

2
for SK). A disadvantage of the conventions (3.1.3)

is that some formulas that are exact for the conventions (2.1.1), (3.1.1) become approximate. For

the Curie-Weiss, the convention (2.1.1) has HN (σ) = N
(

1
N

∑N
i=1 σi

)2

, while for (3.1.3) instead

HN (σ) =
N
2

(
1
N

∑N
i=1 σi

)2

− 1
N

∑N
i=1 σ

2
i = 1

2

(
1
N

∑N
i=1 σi

)2

+ O(1). For the convention (3.1.1) for

the SK the covariance satisfies the identity (3.1.2), while in the convention (3.1.3) the covariance

is E[HN(σ)HN(τ)] =
1
2
N
(
σ·τ
N

)2 − 1
N

∑N
i=1 σ

2
i = 1

2
N
(
σ·τ
N

)2
+ O(1). The exact identity (3.1.2) is

especially convenient in the context of the generalized mixed p-spin Hamiltonians of Definition
3.1.5 below.

Definition 3.1.3 (Pure p-spin Hamiltonians). Let N ≥ 1 and p ≥ 0. We have the following two
alternative definitions.

1. Let Ji1,...,ip, i1, . . . , ip = 1, . . . , N be i.i.d. standard Gaussian random variables, and define
HN : BN → R by

HN(σ) =

N∑

i1,...,ip=1

Ji1,...,ip

N
p−1

2

σi1 . . . σip . (3.1.4)

Then HN is called the pure p-spin Hamiltonian, as is any random function with the same
law as HN .

2. Let HN : BN → R be a Gaussian process on BN with zero mean everywhere, and covariance

E[HN(σ)HN(τ)] = N
(σ · τ

N

)p

. (3.1.5)

Then HN is called the pure p-spin Hamiltonian, as is any random function with the same
law as HN .

Definition 3.1.4 (Covariance function). A power-series z(x) =
∑

p≥0 apx
p with ap ≥ 0 and s.t.

z(x) < ∞ for some x ∈ (0,∞) is called a covariance function or a mixture.

Definition 3.1.5 (Mixed p-spin Hamiltonian). Let z(x) =
∑

p≥0 apx
p be a covariance function as

defined in Definition 3.1.4. Assume z(1) < ∞. Let N ≥ 1. We have the following two alternative
definitions.

1. Let Hp
N(σ), p ≥ 0, be independent pure p-spin Hamiltonians (as in Definition 3.1.3). Let

HN(σ) =
∞∑

p=0

√
apH

p
N(σ). (3.1.6)

Then HN is called a mixed p-spin model with covariance function (or mixture) z(x), as is any
random function with the same law as HN .
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2. Let HN : BN → R be a Gaussian process on BN with zero mean everywhere, and covariance

E[HN(σ)HN(τ)] = Nz
(σ · τ

N

)

. (3.1.7)

Then HN is called a mixed p-spin Hamiltonian with covariance function (or mixture) z(x),
as is any random function with the same law as HN .

Remark 3.1.6 (Regularity of HN). It is obvious that the Hamiltonians defined in (3.1.1) and (3.1.4)
are both a.s. finite and a.s. infinitely differentiable in all of RN , since they are polynomials in the
spin variables. If a covariance function z(x) only has finitely many non-zero terms and the Hp

N

in (3.1.6) are constructed as in (3.1.4), then it is also obvious that the Hamiltonian (3.1.4) is a.s.
finite and infinitely differentiable everywhere in RN . For z(x) with infinitely many non-zero terms
the same will be true provided the ap decay fast enough, to ensure the appropriate convergence of
the series (3.1.6). For instance exponentially decaying ap is certainly enough for the corresponding
Hamiltonian to be well-defined and a.s. finite and infinitely differentiable in BN(r) for some r > 0.
However, in these notes we refrain from dealing with the required technicalities, and wherever it
simplifies the proof we assume that z has finitely many non-zero terms.

Definition 3.1.7 (Mean-field spin glass Hamiltonian with external field). Let HN denote a mean-
field spin glass Hamiltonian (the SK Hamiltonian as in Definition 3.1.1, a pure p-spin Hamiltonian
as in Definition 3.1.3, or a mixed p-spin Hamiltonian like in Definition 3.1.5). The corresponding
SK or pure p-spin or mixed p-spin Hamiltonian with an external field of strength h ≥ 0 is defined
as

Hh
N(σ) := HN(σ) + h

N∑

i=1

σi, σ ∈ BN . (3.1.8)

The SK or pure p-spin or mixed p-spin Hamiltonian Hamiltonian with external field in an arbitrary
direction u ∈ SN−1 is defined as

Hh
N(σ) := HN(σ) + h(σ · u), σ ∈ BN . (3.1.9)

Remark 3.1.8 (Interpretation of p = 0, 1-components). By (3.1.4) with p = 0, the pure 0-spin
Hamiltonian can be constructed as

HN(σ) =
√
NJ0, (3.1.10)

where J0 is a standard normal random variable. It is thus a constant function.
By (3.1.4) with p = 1, the pure 1-spin Hamiltonian can be constructed as

HN(σ) = σ · J1, (3.1.11)

where J1 is a vector with i.i.d. Gaussian entries. It is thus a linear function, taking the same form
as the external field term in (3.1.9) for random h, u.

By (3.1.6), a mixed p-spin Hamiltonian with a0 > 0 or a1 > 0 can be constructed from
a pure 0-spin Hamiltonian σ →

√
NJ0, a pure 1-spin Hamiltonian σ · J1 and a mixed p-spin
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Hamiltonian H̃N(σ) with covariance function z̃(x) =
∑

p≥2 apx
p with a0 = a1 = 0 - all mutually

independent - by setting

HN(σ) := H̃N(σ) +
√
a1σ · J1

︸ ︷︷ ︸

random ext. field

+
√
a0
√
NJ0

︸ ︷︷ ︸

random cons. shift

. (3.1.12)

In this formula HN(σ) can be interpreted as a Hamiltonian with a random constant shift (from
the p = 0 component) and a random external field (from the p = 1 component).
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3.2 Covariance of the Hamiltonians

Lemma 3.2.1. In each of Definition 3.1.1, Definition 3.1.3, and also in Definition 3.1.5 provided
z(r) only has finitely many non-zero terms, the definition (1) in terms of interaction terms Ji1...ip

implies the definition (2) in terms of the covariance.

Proof. Let p ≥ 0 and let HN(σ) =
∑N

i1,...,ip=1N
− p−1

2 Ji1,...,ipσi1 . . . σip for Ji1,...,ip i.i.d. standard

Gaussians. Then for any K ≥ 1 and σ1, . . . , σK ∈ BN each HN(σ
i) is the linear combination of

the same independent Gaussians, so HN(σ
1), . . . , HN(σ

K) are jointly Gaussian. Furthermore

E[HN(σ)] =
N∑

i1,...,ip=1

N− p−1

2 E[Ji1,...,ip]
︸ ︷︷ ︸

=0

= 0. (3.2.1)

For σ, τ ∈ BN the covariance E[HN(σ)HN(τ)] equals

E









N∑

i1,...,ip=1

N− p−1

2 Ji1,...,ipσi1 . . . σip









N∑

j1,...,jp=1

N− p−1

2 Jj1,...,jpτj1 . . . τjp









= E





N∑

i1,...,ip=1

N∑

j1,...,jp=1

N−(p−1)Ji1,...,ipJj1,...,jpσi1 . . . σipτj1 . . . τjp





= N−(p−1)

N∑

i1,...,ip=1

N∑

j1,...,jp=1

E
[
Ji1,...,ipJj1,...,jp

]

︸ ︷︷ ︸

=











1 if (i1, . . . , ip) = (j1, . . . , jp)

0 otherwise

σi1 . . . σipτj1 . . . τjp

= N−(p−1)

N∑

i1,...,ip=1

σi1 . . . σipτi1 . . . τip

= N−(p−1) (σ · τ)p
= N

(
σ·τ
N

)p
X

(3.2.2)
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3.3 Mixed p-spin Hamiltonians as isotropic random fields

An isotropic random field is a random field with a rotational invariant distribution. The next
lemma states that a centered (i.e. mean zero) Gaussian random field on the sphere SN−1 has a
rotationally invariant law iff its covariance for a pair of points on the sphere depends only on the
inner product. This is precisely the form of the covariance of the mixed p-spin Hamiltonians.

Lemma 3.3.1. If N ≥ 1, r > 0 and HN is a centered Gaussian random field on SN−1(r) s.t.

(HN(σ))σ∈BN (r)

law
= (HN(Oσ))σ∈SN−1(r)

for all orthogonal O ∈ RN×N , (3.3.1)

then the covariance of HN(σ) takes the form

E[HN (σ)HN(τ)] = z(σ · τ), σ, τ ∈ SN−1(r), (3.3.2)

for some function z : [0, r] → R.

It is natural to ask for which functions z the map (σ, τ) → z(σ · τ) is a well-defined covariance
function, i.e. is a positive semi-definite function. The next theorem gives a partial answer.

Theorem 3.3.2 (Schoenberg’s theorem). If r > 0 and z : [0, r] → R is a function such that for
each N ≥ 1 the map

(σ, τ) → z(σ · τ) from BN(r)×BN (r) to R (3.3.3)

is positive semi-definite, then z is a covariance function in the sense of Definition 3.1.4.

Lemma 3.3.1 and Theorem 3.3.2 imply that the class of mixed p-spin Hamiltonians consists
of essentially all rotationally invariant Gaussian random fields on the high-dimensional sphere.
The only such Gaussian random fields that are not mixed p-spin Hamiltonians in the sense of
Definition 3.1.5 are those with a covariance of the form (3.3.2) for a z such that (3.3.3) is positive
semi-definite only for some N .
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3.4 Annealed free energy and free energy upper bound

Since it is a N → ∞-dimensional integral, computing the partition function ZN(β) is in general a
difficult task. But for mixed p-spin models without external fields the expectation E[ZN (β)] takes
a simple form.

Lemma 3.4.1 (Annealed FE for h = 0). Let HN be a mixed p-spin Hamiltonian with arbitrary
covariance function z(x) such that z(1) < ∞, and without (deterministic) external field (i.e. h =
0). Let ΣN be any subset of SN−1, and QN be any probability measure on ΣN . Let ZN(β) be the
corresponding partition function. Then

E[ZN(β)] = exp

(
β2

2
z(1)N

)

for all β ≥ 0. (3.4.1)

Proof. Note that

E[ZN(β)]
(1.3.3)
= E[QN [exp(βHN(σ))]]

Fubini
= QN [E[exp(βHN(σ))]]. (3.4.2)

Recall from Definition 3.1.5 that for every σ the random variable HN(σ) is a centered Gaussian
with variance E[HN(σ)

2] = Nz(1).

For a centered Gaussian r.v. Awith variance s2

the exponential moment equals E[exp(λA)] = exp
(

λ2

2
s2
)

.
(3.4.3)

Thus

E[exp(βHN(σ))] = exp

(
β2

2
z(1)N

)

for all σ ∈ SN−1. (3.4.4)

Since QN is assumed to be supported on SN−1, the right-most expression in (3.4.2) thus equals
the l.h.s. of (3.4.1).

Lemma 3.4.1 provides an upper bound for the free energy FN(β) valid for any β ≥ 0 (when
h = 0). The next two corollaries give to variants of this bound.

Corollary 3.4.2. For z(x), h = 0, HN ,ΣN , QN as in Lemma 3.4.1

E[FN (β)] ≤
β2

2
z(1). (3.4.5)

Proof. Since log is concave Jensen’s inequality implies that

E[FN (β)]
(1.3.4)
= E

[
1

N
log(ZN(β))

]
Jensen

≤ 1

N
logE[ZN (β)]

(3.4.1)
=

β2

2
z(1). (3.4.6)
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Corollary 3.4.3. For z(x), h = 0, HN ,ΣN , QN as in Lemma 3.4.1

P

(

FN (β) ≥
β2

2
z(1) + ε

)

≤ e−εN for all ε > 0, N ≥ 1. (3.4.7)

Proof. Using Markov’s inequality:

P

(

FN(β) ≥ β2

2
z(1) + ε

)
(1.3.4)
= P

(

ZN(β) ≥ exp
(

N β2

2
z(1) + εN

))

Markov

≤ E[ZN (β)]

exp
(

N β2

2
z(1)

)

×exp(εN)

(3.4.1)
= 1

exp(εN)
.

(3.4.8)

The quantityβ2

2
z(1) coming from taking the expectation of ZN(β) is called the annealed free

energy. The actual free energy FN(β) (or its expectation E[FN (β)]) is called the quenched free
energy. As we will see later in Section 3.6, the upper bound (3.4.7) is in fact tight to leading order
if h = a0 = a1 = 0 and β is small enough. In fact, for z(x) such that a0 = a1 = 0, the main phase
transition βc is defined as the βc up to which FN(β) converges to the annealed free energy. holds.

Definition 3.4.4 (Critical βc for h = a0 = a1 = 0). For z(x) such that a0 = a1 = 0 and QN = Q±
N

or QN = Qsph
N let

βc = βc(z, QN ) := sup

{

β ∈ [0,∞) : FN (β)
P→ β2

2
z(1)

}

. (3.4.9)

In Section 3.6 we will prove that βc > 0 for all h = a0 = a1 = 0.

The next example gives an example of a covariance function z(x) such that the upper bounds
(3.4.5), (3.4.7) are not tight for any β ≥ 0.

Example 3.4.5 (Quenched free energy not equal to annealed free energy for pure 0-spin Hamil-
tonian). For the mixed p-spin model with covariance z(x) = 1, h = 0 and any reference measure
QN on SN−1, the free energy FN (β) satisfies

lim
N→∞

FN(β) → 0 for all β > 0. (3.4.10)

Thus

lim
N→∞

FN(β) <
β2

2
z(1) for all β > 0, (3.4.11)

where the equality is strict.
To verify (3.4.10), construct the Hamiltonian as HN(σ) =

√
NJ for a standard Gaussian J

(recall (3.1.10)), and note that by a standard Gaussian tail bound

P(|J | ≥ N1/4) ≤ 2 exp

(

−(N1/4)2

2

)

→ 0 as N → ∞. (3.4.12)
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On the event {|J | ≤ N1/4}

ZN(β) = QN [exp(β
√
NJ)] = exp(β

√
NJ) = exp(o(N)), (3.4.13)

which implies
FN(β) = o(1). (3.4.14)

Example 3.4.5 is quite trivial, since for z(x) = 1 the Hamiltonian is constant in σ. But in fact,
the annealed upper bound is loose not only in this case, but for any mixed p-spin model where at
least one h, a0, a1 is positive (i.e. for any model with a deterministic or random external field, or
a constant random shift).
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3.5 Second moment free energy lower bound

In Section 3.4 we proved that in the absence of external field (h = 0), the annealed free energy
β2

2
z(1) is always an upper bound for the quenched free energy FN(β). In this section we give a

sufficient condition (namely (3.5.1)) for the quenched free energy to actually equal the annealed

free energy, i.e. for FN(β) =
β2

2
z(1) + o(1).

Proposition 3.5.1. Let P ≥ 2 and let z(x) =
∑P

p=0 apx
p be a covariance function. For each

N ≥ 1, let HN be a mixed p-spin Hamiltonian with covariance function z and without external
field (h = 0). Let QN = Q±

N and I = I± (Ising model), or QN = Qsph
N and I = Isph (spherical

model), and let FN (β) denote the corresponding free energy. If β ≥ 0 and z(x) are such that

sup
α∈(−1,1)

{
β2z(α)− I(α)

}
≤ 0, (3.5.1)

then

lim
N→∞

P

(

FN (β) ≥
β2

2
z(1)− ε

)

= 1 for all ε > 0. (3.5.2)

Remark 3.5.2.

1. While stated for z(x) =
∑P

p=0 apx
p, the Proposition is in practice only useful if a0 = a1 = 0

- otherwise the condition (3.5.1) is never satisfied for any β ≥ 0.

2. If a0 = 0 then β2z(0)− I(0) = 0, cf. (3.5.1).

3. Proposition 3.5.1 assumes z(x) has only finitely many non-zero terms. This is a technical
condition to shorten the proof - it can easily be weakened to allow infinite sequences ap with
fast enough decay.

Combining Proposition 3.5.1 with Corollary 3.4.3 shows that if h = 0 and (3.5.1) holds, then
the quenched free energy FN(β) in fact converges to the annealed free energy in probability.

Corollary 3.5.3. Let z(x), h = 0, HN , QN be as in the statement of Proposition 3.5.1. If (3.5.1)
holds then

FN(β)
P→ β2

2
z(1), as N → ∞. (3.5.3)

The proof of Proposition 3.5.1 uses the second moment method to show concentration of ZN(β)
around its expectation. As such, it bounds the second moment E[ZN(β)

2] from above, and then
uses the Paley-Zygmund inequality. The Paley-Zygmund inequality states that

P(X ≥ θE[X ]) ≥ (1− θ)2 E[X]2

E[X2]
for θ ∈ [0, 1],

for any r.v. X s.t. X
a.s.

≥ 0 and E[X ] < ∞.
(3.5.4)

Applied to ZN(β) and using Lemma 3.4.1 this gives

P

(

ZN(β) ≥ θ exp

(

N
β2

2
z(1)

))

≥ (1− θ)2
exp(β2z(1))

E[ZN (β)2]
. (3.5.5)

The following lemma gives a simple formula for the second moment E[ZN (β)
2].
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Lemma 3.5.4. Let z(x), h = 0, HN be as in the statement of Proposition 3.5.1. For any reference
probability measure QN

E[ZN (β)
2] = E[ZN(β)]

2 × (QN ×QN )
[

exp
(

Nβ2z
(σ · τ

N

))]

, (3.5.6)

where under the probability measure QN ×QN the r.v.s. σ, τ are independent with law QN .

Proof. We can write

ZN(β)
2 = QN [exp (βHN(σ))]

2 = QN [exp (βHN(σ))]QN [exp (βHN(τ))] , (3.5.7)

where in the second integral on the r.h.s. we integrate over the variable τ rather than σ. By
Fubini’s theorem the r.h.s. equals

(QN ×QN ) [exp (βHN(σ)) exp (βHN(τ))] = (QN ×QN) [exp (β {HN(σ) +HN(τ)})] , (3.5.8)

for QN ×QN as described in the statement. Using (3.5.7) and (3.5.8) and Fubini’s theorem again
we obtain

E[ZN(β)
2] = (QN ×QN ) [E [exp (β {HN(σ) +HN(τ)})]] . (3.5.9)

Now for any fixed σ, τ the random variables HN(σ), HN(τ) are jointly Gaussian with mean zero,
variance Nz(1) and covariance Nz

(
σ·τ
N

)
. This implies that HN(σ)+HN (τ) is Gaussian with mean

zero and variance

E
[
(HN(σ) +HN(τ))

2
]
= Nz(1) +N2z

(σ · τ
N

)

+Nz(1) = N2
(

z(1) + z
(σ · τ

N

))

. (3.5.10)

Thus

E [exp (β {HN(σ) +HN(τ)})]
(3.4.3)
= exp

(

Nβ2
{

z(1) + z
(σ · τ

N

)})

for all σ, τ. (3.5.11)

Using this in (3.5.9) proves (3.5.6).

By symmetry of the distributions QN = Q±
N and QN = Qsph

N , the integral over two spin vectors
σ, τ in (3.5.6) can be reduced to an integral over only σ.

Corollary 3.5.5. For h = 0, all β ≥ 0 and QN = Q±
N or QN = Qsph

N

E[ZN (β)
2] = E[ZN(β)]

2 ×QN

[

exp
(

Nβ2z
(σ · u

N

))]

, (3.5.12)

where
u = (1, . . . 1) ∈ SN−1. (3.5.13)

Proof. Consider σ · τ in (3.5.6) when QN = Q±
N . For each fixed τ ∈ {−1, 1}N , the Q±

N -law of

σ · τ =
∑N

i=1 σiτi coincides with the Q±
N -law of σ · u =

∑N
i=1 σi. Thus when QN = Q±

N the identity

(3.5.12) holds. When QN = Qsph
N , the Qsph

N -law of σ · τ for fixed τ ∈ SN−1 is independent of τ .
Thus also for QN = Qsph

N the identity (3.5.12) follows from (3.5.6).
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The next step is to bound the r.h.s. of (3.5.12) in terms of the supremum in (3.5.1). It is
natural to decompose the integral using the sets

Dα =
{

σ ∈ SN−1 :
∣
∣
∣
σ · u
N

− α
∣
∣
∣ ≤ N− 1

3

}

, α ∈ (−1, 1), (3.5.14)

like we did to analyze the Curie-Weiss model in Section 2.3. But before repeating the argument,
we should note that

QN

[

exp
(

Nβ2z
(σ · u

N

))]

(3.5.15)

on the r.h.s. of (3.5.12) is exactly of the form of the l.h.s. of (2.3.3) with

g(α) = β2z(α). (3.5.16)

Furthermore g is Lipschitz under the assumption on z of Proposition 3.5.1. Thus simply applying
Lemma 2.3.2 allows us to deduce that

QN

[

exp
(

Nβ2z
(σ · u

N

))]

= exp

(

N sup
α∈(−1,1)

{
β2z(α)− I(α)

}
+ o(N)

)

. (3.5.17)

Thus we have proved the following

Lemma 3.5.6. Let z(x), h = 0, HN be as in Proposition 3.5.1. Let QN = Q±
N and I = I±, or

QN = Qsph
N and I = Isph. For h = 0 and all β ≥ 0

E[ZN (β)
2] ≤ E[ZN(β)]

2 × exp

(

N sup
α∈(−1,1)

{
β2z(α)− I(α)

}
+ o(N)

)

. (3.5.18)

By the previous lemma, the condition (3.5.1) implies that

E[ZN(β)
2] ≤ E[ZN(β)]

2 × exp(o(N)). (3.5.19)

Plugging this into (3.5.5) with say θ = 1
2

yields

P







ZN(β) ≥

1

2
exp

(

N
β2

2
z(1)

)

︸ ︷︷ ︸

=E[ZN (β)]2








≥ exp(−o(N)), (3.5.20)

which implies that

P

(

FN(β) ≥
β2

2
z(1)− cN−1

)

≥ exp(−o(N)), (3.5.21)

(for c = log 2−1). The inequality (3.5.21) states that there is a sequence aN s.t. the probability
on l.h.s. exceeds exp(−aN ) and limN→∞

aN
N

= 0. Comparing (3.5.21) to our goal (3.5.2), we see
that (3.5.21) falls short. Indeed, our actual goal (3.5.2) states that the probability on the l.h.s. of
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(3.5.21) tends to one, while (3.5.21) only gives the weaker statement that this probability is not
exponentially small in N . For instance it doesn’t rule out that the probability tends to zero at
rate O(N−100).

The most direct way to improve the lower bounds in (3.5.20)-(3.5.21) is to bound the second
moment more precisely. In particular, if one can show the asymptotic

E[ZN (β)
2] = (1 + o(1))E[ZN(β)]

2, (3.5.22)

which is a stronger estimate than (3.5.19), then the Paley-Zygmund inequality (3.5.5) with say
θ = exp(−

√
N) implies that

lim
N→∞

P

(

ZN(β) ≥ exp

(

N
β2

2
z(1)−

√
N

))

= 1, (3.5.23)

which in turns would imply (3.5.2).
The asymptotic (3.5.22) does in fact holds if a0 = a1 = a2 = 0 and the sup in (3.5.18) is uniquely

maximized at α = 0. This can be proved by estimating the r.h.s. of (3.5.6) by an integral of the
form

∫
exp(Nf(α))dα for f(α) uniquely maximized at α = 0. Such an integral can be estimated

using Laplace’s method. The leading order estimate of Laplace’s method then yields (3.5.18), while
the subleading correction to the Laplace’s method yields (3.5.22). However, if a2 > 0 and the sup
in (3.5.18) is uniquely maximized at α = 0, it holds that E[ZN (β)

2] = κ(1 + o(1))E[ZN(β)]
2

for a constant κ > 1 (which again comes from the correction to Laplace’s method), so at best
Paley-Zygmund only yields

lim inf
N→∞

P

(

ZN ≥ exp

(

N
β2

2
z(1)− o(N)

))

≥ κ−1
︸︷︷︸

<1

. (3.5.24)

Luckily, the weak lower bound (3.5.21) can be strengthened to our goal (3.5.2) without using
the precise asymptotic (3.5.22). Instead, general concentration results for Lipschitz functions of
independent Gaussians can be used to derive (3.5.2) from (3.5.21).

The rest of this section deals with the technicalities that are needed to finish the proof of
Proposition 3.5.1 (deriving (3.5.2) from (3.5.21)). Unless you are particular interested in the
details, feel free to skip ahead to Section 3.6, where the condition (3.5.1) is investigated.

3.5.1 Remaining technicality: Strengthening (3.5.21) to (3.5.2)

To strengthen the weak lower bound (3.5.21) to the desired (3.5.2) we use the following standard
general concentration result.

Theorem 3.5.7 (Concentration of Lipschitz functions of independent Gaussians). Let X1, X2, . . .
be i.i.d. standard Gaussian random variables. Let d ≥ 1 and let F : Rd → R be a Lipschitz
function with Lipschitz constant at most L > 0. Then

P (|F (X1, . . . , Xd)− E[F (X1, . . . , Xd)]| ≥ u) ≤ 2 exp

(

− u2

2L

)

for all u ≥ 0. (3.5.25)
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Theorem 3.5.7 is useful to us because it turns out that the free energy of a Hamiltonian
constructed from couplings Ji1,...,ip is Lipschitz in these couplings. To formally state this, define
the map

H̃p
N : RNp × SN−1 → R, H̃p

N(J, σ) =
N∑

i1,...,ip=1

N− p−1

2 Ji1,...,ipσi1 . . . σip. (3.5.26)

For any z(x) =
∑P

p=0 apx
p with P < ∞ define

H̃N : R1+N+N2+...+NP → R, H̃N((J
0, . . . ,JP ), σ) =

P∑

p=0

√
apH̃

p
N(J

p, σ). (3.5.27)

Also define

F̃N : R1+N+N2+...+NP → R by F̃N(J) =
1

N
logQN

[

exp(βH̃N(J, σ))
]

. (3.5.28)

Note that the free energy FN (β) of the mixed p-spin Hamiltonian with covariance function z(x)
satisfies

FN(β)
law
= F̃N(J)

provided Jp
i1,...,ip

are i.i.d. standard Gaussians.
(3.5.29)

Lemma 3.5.8. For all P < ∞, z(x), β ≥ 0, N ≥ 1 and any probability measure QN on SN−1, the

function F̃N is Lipschitz with Lipschitz constant at most β
√

z(1)N− 1

2 .

Proof. It suffices to show that

∣
∣
∣∇JF̃N (J)

∣
∣
∣ ≤

β
√

z(1)√
N

for all J ∈ RNp

, (3.5.30)

where ∇JF̃N (J) ∈ RNp

denotes the gradient of F̃N w.r.t to J ∈ R1+N+N2+...+NP

.
From (3.5.27)-(3.5.28) it follows that

∂Jp
i1...ip

F̃N(J) =
√
ap
N

QN

[

β
(

∂Jp
i1...ip

H̃N(J, σ)
)

exp(βH̃N(J, σ))
] (

QN

[

exp(βH̃N(J, σ))
])−1

=
β
√
ap

N
G̃N

(

∂Jp
i1...ip

H̃N(J, σ);J
)

,

(3.5.31)

where G̃N(A;J) ∝ QN

[

1A exp(βH̃N(J, σ))
]

denotes the Gibbs measure of the Hamiltonian σ →
H̃N (J, σ). The function H̃N(J, σ) is linear in J, and trivially

∂Jp
i1...ip

H̃N(J, σ) = N− p+1

2 σi1 . . . σip , for all p ∈ {0, . . . , P}, i1, . . . , ip ∈ {1, . . . , N}. (3.5.32)

Thus
∂Jp

i1...ip
F̃N(J) = β

√
apN

− p

2 G̃N

(
σi1 . . . σip ;J

)
. (3.5.33)
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By Jensen’s inequality G̃N(σi1 . . . σip ;J)
2 ≤ G̃N (σ

2
i1 . . . σ

2
ip;J)

2 for all σ ∈ SN−1 (for σ ∈ {−1, 1}N
both sides actually trivially equal one). Thus

(

∂Jp
i1...ip

F̃N (J)
)2

≤ β2apN
−pG̃N(σ

2
i1
. . . σ2

ip ;J). (3.5.34)

Summing (3.5.34) over i1, . . . , ip and then p we obtain

∣
∣
∣∇JF̃N(J)

∣
∣
∣

2

≤ β2
P∑

p=0

apN
−pG̃N





N∑

i1,...,ip=1

σ2
i1
. . . σ2

ip ;J



 . (3.5.35)

For σ ∈ SN−1
N∑

i1,...,ip=1

σ2
i1
. . . σ2

ip = |σ|2p = Np, (3.5.36)

so
∣
∣
∣∇JF̃N (J)

∣
∣
∣

2

≤ β2

P∑

p=0

apN
−(p+1)Np =

β2

N

P∑

p=0

ap =
β2

N
z(1). (3.5.37)

This proves (3.5.30), and therefore that F̃N is β
√

z(1)N−1/2-Lipschitz.

Corollary 3.5.9. For all P < ∞, z(x) =
∑P

p=0 apx
p, β ≥ 0, N ≥ 1 and any probability measure

QN on SN−1

P (|FN(β)− E(FN(β))| ≥ u) ≤ exp

(

−N
u2

2β2z(1)

)

for all N ≥ 1, β ≥ 0, u ≥ 0. (3.5.38)

Proof. This follows from (3.5.29), Lemma 3.5.8 and Theorem 3.5.7.

Lemma 3.5.10. If for some β ≥ 0 the estimate (3.5.21) holds then

lim inf
N→∞

E[FN (β)] ≥
β2

2
z(1). (3.5.39)

Remark 3.5.11. We already know from Corollary 3.4.2 that E[FN (β)] ≤ β2

2
z(1), so if (3.5.21) holds

then in fact

lim
N→∞

E[FN (β)] =
β2

2
z(1). (3.5.40)

Proof. Assume for contradiction that (3.5.39) does not hold, i.e. that lim infN→∞ E[FN (β)] <
β2

2
z(1). Then there is an ε > 0 such that

E[FN (β)] ≤
β2

2
z(1)− ε for infinitely many N. (3.5.41)
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For such N

P

(

FN(β) ≥
β2

2
z(1)− ε

2

)

≤ P

(

FN(β) ≥ E[FN (β)] +
ε

2

) (3.5.38)
≤ exp

(

−N
ε2

8β2z(1)

)

. (3.5.42)

But at the same time we have for N large enough that

P

(

FN(β) ≥
β2

2
z(1)− ε

2

)

≥ P

(

FN (β) ≥
β2

2
z(1)− cN−1

)
(3.5.21)

≥ exp(−o(N)). (3.5.43)

Note that (3.5.42) and (3.5.43) are in contradiction. Thus (3.5.39) must hold.

Proof of Proposition 3.5.1. The (weak) estimate (3.5.21) holds under the assumptions of Proposi-
tion 3.5.1. Thus by Lemma 3.5.10 it holds for any ε > 0 and N large enough that

β2

2
z(1) ≤ E[FN (β)] +

ε

2
, (3.5.44)

implying

P

(

FN(β) ≤
β2

2
z(1)− ε

)

≤ P

(

FN (β) ≤ E[FN (β)]−
ε

2

)

. (3.5.45)

By Corollary 3.5.9

P

(

FN(β) ≤ E[FN (β)]−
ε

2

)

≤ 2 exp

(

−N
ε2

8β2z(1)

)

→ 1, (3.5.46)

so (3.5.2) follows.
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3.6 Analysis of the the second moment condition

Let us now investigate the second moment condition

sup
α∈(−1,1)

{
β2z(α)− I(α)

}
≤ 0, (3.6.1)

which which we saw in the previous section is sufficient for quenched free energy to be given by
the annealed free energy, i.e. for

FN (β)
P→ β2

2
z(1). (3.6.2)

The following figures plot the function β2z(α) − I(α) for I = Isphsome examples of covariance
functions z(α).
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From Figure 3.6.1 we observe that

for z(x) = x2 and I = I± or I = Isph

β ∈
[

0, 1√
2

]

⇐⇒ sup
α∈(−1,1)

{β2z(α)− I(α)} = 0. (3.6.3)

The implications in (3.6.3) are easy to prove prove rigorously, see below. From (3.6.3) it follows
that

FN(β)
P→ β2

2
z(1) for z(x) = x2, QN ∈ {Qsph

N , Q±
N}, β ∈ [0,

1√
2
). (3.6.4)

It turns out that β = 1√
2

is in fact the critical inverse temperature βc for the models in (3.6.4); that

is, for β > 1√
2

it holds that lim supN→∞ FN (β) <
β2

2
z(1). We will not cover the proof of this fact.

The situation in (3.6.4) where the sec mom condition is equivalent to the “sharp” high-temperature
condition β ≤ βc is unusual. Define for z(x) =

∑P
p=2 apx

2 and I ∈ {I±, Isph}

β2nd = β2nd(z, I) := sup{β ≥ 0 : β2z(α)− I(α) ≤ 0 ∀α ∈ (−1, 1)}, (3.6.5)

so that
β ∈ [0, β2nd(z, I)] ⇐⇒ sup

α∈(−1,1)

{
β2z(α)− I(α)

}
= 0. (3.6.6)

For the 2-spin models in (3.6.4) we have β2nd(z, I) = βc(z, I), but the much more common situation
is that β2nd(z, I) < βc(z, I).

The following general lemmas are easily proved by elementary computations.

Lemma 3.6.1. Let P ≥ 2 and let z(x) =
∑P

p=2 apx
p be a covariance function with a0 = a1 = 0

and z(1) > 0. For each N ≥ 1, let HN be a mixed p-spin Hamiltonian with covariance function z
and without external field (h = 0). Let I = I± (Ising model) or I = Isph (spherical model). Then
For all z(x) =

∑

p≥2 apx
ps.t. z(1) < ∞ and I ∈ {I±, Isph} it holds that β2nd(z, I) > 0. In fact

β2nd(z, I) = inf
α∈(−1,1)\{0}

√

I(α)

z(α)
> 0. (3.6.7)

Lemma 3.6.2. If z(x) = a2x
2 for a2 > 0 then holds that

β2nd(z, I) =
1√
2a2

. (3.6.8)

More generally, (3.6.1) holds if QN = Qsph
N and z(x) = a2x

2 +
∑

p∈{4,6,...} apx
p for 0 ≤ ap ≤ a2

p
, or

if QN = Q±
N and z(x) = x2 +

∑

p∈{4,6,...} apx
p for 0 ≤ ap ≤ a2

p(p−1)
.
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3.7 Geometric derivation of TAP free energy

TAP free energy of Ising mixed p-spin model

F±
TAP(m) = βHN(m)−

N∑

i=1

I±(mi) +N
β2

2
(z(1)− z′(qm)(1− qm)− z(qm)) , (3.7.1)

where

qm =
|m|2
N

. (3.7.2)

TAP free energy of spherical mixed p-spin model

F±
TAP(m) = βHN(m)− Isph(1− qm) +N

β2

2
(z(1)− z′(qm)(1− qm)− z(qm)) . (3.7.3)

TBC
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3.8 Sketch of TAP upper bound for free energy

TBC
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Appendix

Proof of Lemma 2.2.1. We first show the upper bound

QN

[{

σ ∈ SN−1 :
σ · u
N

≥ α
}]

≤ exp(−NI±(α)) for α ∈ [0, 1], N ≥ 1. (4.0.1)

We have σ · u =
∑N

i=1 σi, s

QN

[{

σ ∈ SN−1 :
σ · u
N

≥ α
}]

= QN

[
N∑

i=1

σi ≥ Nα

]

. (4.0.2)

Under QN the σ1, . . . , σN are i.i.d. such that QN (σi = 1) = QN (σi = −1) = 1
2
. Thus

QN [exp(λσi)] = cosh(λ) for all λ ∈ R. (4.0.3)

By the exponential Chebyshev inequality we obtain

QN

[
N∑

i=1

σi ≥ Nα

]

≤ exp

(

N inf
λ≥0

g(α, λ)

)

. (4.0.4)

where
g(α, λ) = λα− log cosh(α), α ∈ [0, 1], λ ∈ [0,∞). (4.0.5)

For every α ∈ [0, 1), the function λ → g(α, λ) is uniquely minimized by λ(α) := atanh(α), and

g(α, λ(α)) = I(α) for all α ∈ (−1, 1). (4.0.6)

This proves (4.0.1) for α ∈ [0, 1). For α = 1 equality holds, since QN

[
∑N

i=1 σi ≥ N
]

= QN

[
∑N

i=1 σi = N
]

=

2−N and exp(−NI±(1)) = exp(−N log 2) = 2−N .
For the lower bound, let Xi = σi+1

2
be i.i.d. Bernoulli r.v.s. with parameter p = 1

2
. Let

p(α) = N−1⌈N(1+α)
2

⌉ denote 1+α
2

rounded up to the closest multiple of N−1, and note that

QN

[
N∑

i=1

σi ≥ Nα

]

= QN

[
N∑

i=1

Xi ≥
N(1 + α)

2

]

≥ QN

[
N∑

i=1

Xi = Np(α)

]

=
1

2N

(
N

Np(α)

)

,

(4.0.7)

40
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where ⌈x⌉ denote x rounded up to the nearest integer. Let

I(p) = p log p+ (1− p) log(1− p), (4.0.8)

so that
I(p) = I±(2p− 1)− log 2 for p ∈ [0, 1]. (4.0.9)

Using Stirling’s formula
log(n!) = n logn− n +O(logn), (4.0.10)

we obtain

log

(
N

Np(α)

)

= −NI(p(α)) +O(logN). (4.0.11)

Note that ∣
∣
∣
∣
I

(
k

N

)

− I

(
k + 1

N

)∣
∣
∣
∣
≤
∣
∣
∣
∣
I(1)− I

(
N − 1

N

)∣
∣
∣
∣
= logN.. (4.0.12)

|I±(2p(α)− 1)− I±(α)| ≤
logN

N
, (4.0.13)

so

log

(
N

Np(α)

)

= N {I±(α) + log 2}+O(logN). (4.0.14)

|(2p(α)− 1)− α| ≤ N−1, (4.0.15)

and ε > 0 the function I± is Lipschitz on [0, 1− ε], so

I±(2p(α)− 1) = I±(α) +O(N−1). (4.0.16)

≤ exp (−NI±(2p(α)− 1) + o(N)) (4.0.17)

(4.0.18)

−N log 2−N log 2 + logN (4.0.19)

Lemma 4.0.1. Let X be a standard Gaussian random variable. Then exponential moment of X2

equals

E[exp(λX2)] =

{
1√

1−2λ
if λ ∈

(
−∞, 1

2

)
,

∞ otherwise.
(4.0.20)

Proof. Since
∫∞
−∞ eλx

2 1√
2π
e−

x2

2 dλ = 1√
1−2λ

.

The next lemma derives large deviation bounds for sums
∑N

i=1X
2
i where Xi is standard Gaus-

sian. The large deviation rate function is

I(u) =
u− log u− 1

2
, u > 0. (4.0.21)
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Lemma 4.0.2. Let X1, X2, . . . be i.i.d. standard Gaussian random variables. For any ε > 0 and
large enough N it holds that

P

(

1

N

N∑

i=1

X2
i ≤ u

)

= exp(−NI(u) + o(N)) uniformly in u ∈ [ε, 1]. (4.0.22)

Proof. We first prove the upper bound

P

(

1

N

N∑

i=1

X2
i ≤ u

)

≤ exp(−NI(u)) for all u ∈ (0, 1], N ≥ 1. (4.0.23)

Let

f(λ) =
1

2
log(1− 2λ) and g(u, λ) = f(λ)− λu, λ ∈

(

−∞,
1

2

)

, u ∈ (0, 1]. (4.0.24)

By (4.0.20)

E

[

exp

(

λ

N∑

i=1

X2
i

)]

= exp(Nf(λ)) for all λ ∈
(

−∞,
1

2

)

, (4.0.25)

and so by the exponential Chebyshev inequality

P

(

1

N

N∑

i=1

X2
i ≤ u

)

≤ exp

(

N inf
λ≤0

g(u, λ)

)

for all u ∈ (0, 1], (4.0.26)

For u ∈ (0, 1] the function λ → g(u, λ) is uniquely minimized at

λ = λ(u) := −1 − u

2u
for which g(u, λ(u)) = −I(u). (4.0.27)

This proves (4.0.23).
To prove the lower bound (4.0.22), fix ε > 0 and let QN,λ be the probability measure such that

QN,λ(A) =
E[1A exp(λ

∑N
i=1X

2
i )]

E[exp(λ
∑N

i=1X
2
i )]

, λ <
1

2
. (4.0.28)

Under the measure QN,λ the X2
i , i = 1, . . . , N , are i.i.d. with mean f ′(λ) = (1−2λ)−1 and variance

f ′′(λ) = 2(1− 2λ)−2. If λ = λ(w) for w ∈ (0, 1], then the mean is f ′(λ(w)) = w and the variance

is f ′′(λ(w)) = 2w2. For N large enough so that ε ≥ 4N− 1

2 and any u ∈ [ε, 1], set δ = 2N− 1

2 and
define w(u) = u− δ for u ∈ [ε, 1]. Note that w(u) ∈ [ ε

2
, 1) for all u ∈ [ε, 1]. Set λ = λ(w(u)). Then

λ(w(u)) < λ(1) = 0 for all u ∈ [ε, 1]. (4.0.29)
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Thus with λ = λ(w(u))

P

(

u− 2δ ≤ 1
N

∑N
i=1X

2
i ≤ u

)

= QN,λ

[

1{u−2δ≤ 1

N

∑N
i=1

X2
i
≤u} exp(−λ

∑N
i=1X

2
i )
]

exp(Nf(λ))

λ(w(u))<0

≥ QN,λ

[

u− 2δ ≤ 1
N

∑N
i=1X

2
i ≤ u

]

exp (N {−λ(u− 2δ) + f(λ)}) .

(4.0.30)

We have

QN,λ

[

u− 2δ ≤ 1

N

N∑

i=1

X2
i ≤ u

]

= QN,λ

[

−δ ≤ 1

N

N∑

i=1

(X2
i − w(u)) ≤ δ

]

, (4.0.31)

where the X2
i −w(u) are i.i.d. with mean zero and variance 2w(u)2 under QN,λ. By the Chebyshev

inequality

QN,λ

[

−δ ≤ 1

N

N∑

i=1

(X2
i − w) ≤ δ

]

≥ 1− 2w(u)2

Nδ2
= 1− w(u)2

2
≥ 1

2
for all u ∈ [ε, 1]. (4.0.32)

Thus from (4.0.30) it follows that

P

(

u− 2δ ≤ 1

N

N∑

i=1

X2
i ≤ u

)

≥ 1

2
exp (N {−λ(u− 2δ) + f(λ)}) for all u ∈ [ε, 1]. (4.0.33)

Furthermore

−λ(u− 2δ) + f(λ) = g(u, λ) + 2δλ = g(u, λ(u− δ)) + 2δλ(u− δ). (4.0.34)

For u ∈ [ε, 1] it holds that [u − δ, u] ∈ [ ε
2
, 1]. The function v → λ(v) is bounded and Lipschitz in

[ ε
2
, 1], and λ([ ε

2
, 1]) ⊂ [λ( ε

2
), 0]. Furthermore g is Lipschitz on [0, 1]× [λ( ε

2
), 0]. Thus the r.h.s. of

(4.0.34) equals

g(u, λ(u)) + 2δλ(u) +O(δ) = −I(u) +O(δ) uniformly for u ∈ [ε, 1]. (4.0.35)

Combining these with (4.0.33), the lower bound of (4.0.22) follows.

Proof of Lemma 2.2.2. For α = 0 the claim is obvious. Also by the rotational invariance of QN

we can w.l.o.g. set u = (0, . . . , 0,
√
N) ∈ RN .

We first prove the upper bound

QN

[{

σ ∈ SN−1 :
σ · u
N

≥ α
}]

≤ exp

(
N − 1

2
log(1− α2) +

1

2
log(eN)

)

for all α ∈ [0, 1), N ≥ 1.

(4.0.36)
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Let X1, X2, . . . be i.i.d standard Gaussian random variables. Let VN = (X1, . . . , XN), N ≥ 1 be
Gaussian vectors with standard independent components. By the rotational symmetry of the law

of VN , the r.v.
√
N

|VN |VN is uniform on SN−1. Thus

QN

[{

σ ∈ SN−1 :
σ · u
N

≥ α
}]

= P





√
N

|VN |VN · u
N

≥ α



 = P

(

XN
√

X2
1 + . . .+X2

N

≥ α

)

(4.0.37)

for all α ∈ (0, 1) and N ≥ 1. The r.h.s. in turn equals

P

(
1− α2

α2
X2

N ≥ X2
1 + . . .+X2

N−1

)

. (4.0.38)

By the exponential Chebyshev inequality this is abounded above by

inf
λ≥0

E

[

exp

(

λ

{
1− α2

α2
X2

N − (X2
1 + . . .+X2

N−1)

})]

. (4.0.39)

By (4.0.20) this equals

inf
λ∈[0, 1

2

α2

1−α2 )

{√

1

1− 2λ1−α2

α2

exp

(

−N − 1

2
log(1 + 2λ)

)}

. (4.0.40)

For λ = (1−N−1)1
2

α2

1−α2 we have

1 + 2λ = 1 + (1−N−1)
α2

1− α2
=

1−N−1α2

1− α2
, (4.0.41)

and

1− 2λ
1− α2

α2
= 1− (1−N−1) = N−1. (4.0.42)

Using this λ we obtain that (4.0.38) is at most

exp

(
N − 1

2
log(1− α2)− N − 1

2
log(1−N−1α2)

)

, (4.0.43)

for all ε ∈ (0, 1). Also

−N − 1

2
log(1−N−1α2) ≤ −N − 1

2
log(1−N−1) ≤ N − 1

2
N−1 ≤ 1

2
. (4.0.44)

This proves (4.0.36).
In turn, (4.0.36) implies the upper bound of (2.2.5), because for any fixed ε ∈ (0, 1) we have

1
2
log(1− α2) = o(N) uniformly in α ∈ [0, 1− ε]. To prove the lower bound of (2.2.5), set

u = u(α) := 1− α2 (4.0.45)
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and note that
P

(
1−α2

α2 X2
N ≥ X2

1 + . . .+X2
N−1

)

≥ P

(
1−α2

α2 X2
N ≥ uN ≥ u(N − 1) ≥ X2

1 + . . .+X2
N−1

)

= P

(
1−α2

α2 X2
N ≥ uN

)

P
(
u(N − 1) ≥ X2

1 + . . .+X2
N−1

)
,

(4.0.46)

By (4.0.22)
P
(
u(N − 1) ≥ X2

1 + . . .+X2
N−1

)
≥ exp(−NI(u) + o(N)), (4.0.47)

uniformly in α ∈ [0, 1− ε]. Using the Gaussian tail inequality

P(XN ≥ x) ≥ 1

2x
√
2π

e−
x2

2 for x ≥
√
2, (4.0.48)

we obtain

P

(
1− α2

α2
X2

N ≥ uN

)

≥ exp

(

−N
u

2

α2

1− α2
+ o(N)

)

, (4.0.49)

uniformly in α ∈ [0, 1− ε]. Note that

−I(u)− u

2

α2

1− α2

u=1−α2

=
1

2
log(1− α2) for all α ∈ [0, 1). (4.0.50)

From this the lower bound of (2.2.5) follows.
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